
Preventing (Network) Time Travel with Chronos

Omer Deutsch, Neta Rozen Schiff, Danny Dolev, Michael Schapira
School of Computer Science and Engineering, The Hebrew University of Jerusalem

omermaya@gmail.com, neta.rozenschiff@mail.huji.ac.il,danny.dolev@mail.huji.ac.il, schapiram@huji.ac.il

Abstract—The Network Time Protocol (NTP) synchronizes
time across computer systems over the Internet. Unfortunately,
NTP is highly vulnerable to “time shifting attacks”, in which
the attacker’s goal is to shift forward/backward the local time
at an NTP client. NTP’s security vulnerabilities have severe
implications for time-sensitive applications and for security mech-
anisms, including TLS certificates, DNS and DNSSEC, RPKI,
Kerberos, BitCoin, and beyond. While technically NTP supports
cryptographic authentication, it is very rarely used in practice
and, worse yet, timeshifting attacks on NTP are possible even if
all NTP communications are encrypted and authenticated.

We present Chronos, a new NTP client that achieves good
synchronization even in the presence of powerful attackers
who are in direct control of a large number of NTP servers.
Importantly, Chronos is backwards compatible with legacy NTP
and involves no changes whatsoever to NTP servers. Chronos
leverages ideas from distributed computing literature on clock
synchronization in the presence of adversarial (Byzantine) be-
havior. A Chronos client iteratively “crowdsources” time queries
across multiple NTP servers and applies a provably secure
algorithm for eliminating “suspicious” responses and averaging
over the remaining responses. Chronos is carefully engineered
to minimize communication overhead so as to avoid overloading
NTP servers.

We evaluate Chronos’ security and network efficiency guar-
antees via a combination of theoretical analyses and experiments
with a prototype implementation. Our results indicate that to
succeed in shifting time at a Chronos client by over 100ms from
the UTC, even a powerful man-in-the-middle attacker requires
over 20 years of effort in expectation.

I. INTRODUCTION

A. NTP is Insecure

The Network Time Protocol (NTP) is the default protocol
for synchronizing computer systems across the Internet and is
ubiquitously deployed. Many applications, including security
protocols and mechanisms such as TLS certificates, DNS
(and DNSSEC), BGP security mechanisms (namely, RPKI),
Kerberos, HTTP Strict Transport Security (HSTS), financial
applications, and more, crucially rely on NTP for correctness
and safety [9], [17], [18], [23].

However, similarly to other core components of the In-
ternet’s fragile infrastructure (e.g., TCP/IP, BGP, DNS), NTP

was designed many decades ago and without security in mind.
NTP’s design thus reflects the need to achieve correctness in
the presence of inaccurate clocks (“falsetickers” [33]), assumed
to be fairly rare, as opposed to designated attacks by powerful
adversaries. Consequently, NTP is alarmingly vulnerable to
attacks, ranging from time shifting attacks that stealthily shift
clocks on victim clients to denial-of-service attacks [24].

In a nutshell, NTP is based on a client-server architecture:
an NTP-client periodically selects servers to sync to from a
pool of servers. Selecting servers from the pool involves these
servers passing a sequence of “tests” intended to establish their
reliability and accuracy. The NTP client syncs its internal clock
to the clock reading from these servers via an algorithm that
mitigates the effects of variability in network latency.

Unfortunatey, man-in-the-middle attackers capable of in-
tercepting traffic between a client and server (for instance,
through BGP hijacking [13], [39], DNS hijacking [10], [16],
[19]) can wreak havoc on time synchronization [3], [26].
Worse yet, even an off-path attacker incapable of observing
NTP traffic can launch devastating attacks on the protocol by
exploiting weaknesses in NTP’s implementation [26].

Recently introduced patches to NTP’s implementation
eliminate/mitigate some off-path attacks and implementation
flaws, yet attackers capable of manipulating client-server com-
munications are deemed simply “too strong for NTP, because
a man-in-the-middle attacker can always bias time synchro-
nization by dropping or delaying packets.” [27].

Importantly, while the cure to some of NTP’s ailments
may lie in encrypting NTP traffic between clients and servers,
even ubiquitous encryption and authentication is insufficient
for protecting NTP time synchronization from an attacker
capable merely of delaying and replaying packets. (In addition,
this mode of operation is very rare in practice [26] and faces
significant challenges to global adoption.)

B. Introducing Chronos

We present Chronos, an NTP client engineered to protect
from timeshifting attacks. Chronos is engineered to achieve
three desiderata:

• Provable security guarantees even against very
powerful man-in-the-middle attackers. Specifically,
Chronos is designed to protect even against attackers
capable of compromising a large number of (even
authenticated!) NTP servers.

• Backwards-compatibility with today’s NTP servers.
Chronos is designed to be readily deployable and,
in particular, involves software changes to the NTP

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23xxx
www.ndss-symposium.org

client side only and no changes whatsoever to NTP’s
message format or to NTP servers.

• Low computational and communication overhead.
Today’s NTP involves fairly little client-server com-
munication. Overloading NTP servers can result in
slower response times and, as a result, degraded
synchronization. Chronos is thus engineered to avoid
excessive overhead on both the clients and the servers.

Chronos’ design leverages ideas from the rich body of
literature in distributed computing theory in the presence
of Byzantine attackers. Synchronizing clocks in distributed
systems in the presence of faulty and malicious parties has
been central to distributed computing research from its very
early days [6], [15], [20], [44]. Chronos adapts ideas from
this body of research, which typically assumes a relatively
small group of computational nodes, to the context of large-
scale, NTP-compatible time-synchronization across the global
Internet.

A Chronos-client periodically queries small subsets of
large pool of NTP-servers to solicit timing information and
then applies a theory-informed algorithm for removing outliers
and averaging over the remaining responses. We prove that
this fairly low-overhead crowdsourcing scheme guarantees that
the internal clock of each Chronos client remain close (time-
wise) to the universal time (UTC), and that the clocks of any
two Chronos-clients remain close to each other, even if the
attacker controls a fairly large fraction of the NTP servers.
Thus, Chronos provides meaningful security guarantees for
adopters even under very partial deployment.

We evaluate Chronos’ correctness, security, and network
efficiency via a combination of theoretical and empirical
analyses with a prototype implementation.

C. Our Contributions

We make the following main contributions:

• Identifying key elements in NTP’s architecture that
render it vulnerable to man-in-the-middle attacks.
We highlight two crucial aspects of today’s NTP archi-
tecture (and today’s implementations) that make NTP
clients particularly subsceptible to man-in-the-middle
attackers: (1) the (typical) reliance on small sets of
servers, and (2) utilizing (a variant of) Marzullos’
algorithm [28]–[30] for selecting the servers to sync
to.

• Designing Chronos. We present Chronos, a new NTP-
compatible client carefully engineered to strike a good
balance between security and deployability. Chronos’
design revisits and replaces elements in the NTP client
architecture that give rise to NTP’s vulnerabilities to
man-in-the-middle attacks (as outlined above). We
grapple with algorithmic and operational issues in-
volved in accomplishing this objective.

• Evaluating Chronos from both a theoretical per-
spective and an empirical perspective. We study
Chronos’ security guarantees and overhead through

both extensive theoretical analysis and empirical anal-
yses of a prototype implementation of Chronos on
Amazon AWS (EC2) machines in 6 different regions
in the USA and Europe. Our results indicate that to
succeed in shifting time at a Chronos client by even
a small amount (e.g., 100ms), even a powerful man-
in-the-middle attacker requires many years of effort
(e.g., over 20 years in expectation).

• Outlining directions for future research. We view
Chronos as a first step towards securing NTP from
man-in-the-middle attacks. We leave the reader with
interesting research directions regarding how Chronos
can be extended and regarding applications of our
ideas to other time-synchronization contexts.

D. Organization

We provide a high-level overview of NTP and discuss some
of NTP’s security vulnerabilities in Section II-B. We present
Chronos’ design in Section III-B and analyze its security
guarantees in Section IV. We report on empirical analyses
using a prototype implementation of Chronos, and on how
these can be used to guide parameter value assignments in
Chronos in Section V. Section VI presents related work. We
conclude and discuss interesting directions for future research
in Section VII.

II. NTP: OVERVIEW AND VULNERABILITIES

We present below a high-level overview of NTP’s archi-
tecture. To simplify exposition, many technical details are
omitted (e.g., the notion of NTP strata, delay computation, and
more). The reader is referred to [1], [31], [32] for a thorough
exposition. After presenting NTP’s architecture, we discuss
NTP’s notorious security vulnerabilities.

A. NTP Overview

NTP’s basic client-server architecture consists of two main
consecutive steps: (1) the poll process, in which the NTP client
exchanges messages with NTP servers so as to gather time
samples (and other parameters such as per server delay), and
(2) selecting the “best” time samples, and updating the local
clock accordingly. Next a high-level overview of these steps, as
captured by today’s implementation of NTP [31], is presented.
See [1], [32] for more details.

Poll process. Under NTP, the client periodically exchanges
messages with a set of NTP servers Q so as to attain clock
readings from each server in Q. See Figure 1(a) for an
illustration. The set of servers Q, termed here the client-
associated server pool, is typically determined via a DNS
query to pool.ntp.org and consists of NTP servers that are
“close” to the client. The client samples the time at each server
in Q by sending an NTP time query to the server and receiving
an NTP response. Through this interaction, the client obtains
4 distinct timestamps per query:

• T1: the local time at the client upon sending the query.

• T2: the local time at the server upon receiving the
query.

2

(a) Client-server message exchange

(b) Measuring Offset in NTP

Figure 1: NTP’s poll process

• T3: the local time at the server upon sending the
response.

• T4: the local time at the client upon receiving the
response.

These timestamps are then used to compute the offset θ =
1
2 ((T2 − T1) + (T3 − T4)) [24], [38], which is intended to
capture the difference between the local time at the client and
the local time at the server. The client gathers several time
samples from each server in the server pool and computes,
for each sample, the associated offsets. See Figure 1(b) for an
illustration.

Selecting the “best” time samples. After gathering several
time values (and measuring offsets) from each server on the
list Q, the client applies a 5-step algorithm to compute a new
time to update its local clock to (see [1], [31]). This process
is described in Figure 2.

First, the time sample with the lowest offset collected
from each server is identified and all other time samples are
discarded. Then, various “sanity checks” are performed on the
surviving samples so as to eliminate time samples from servers
that seem unhealthy or unsuitable for synchronization [1],
[31]. Then, Marzullo’s algorithm [28]–[30] is applied to find,
within the set of remaining time samples, a “majority clique
of truechimers” [1], [31], i.e., a large cluster of servers with
(fairly) accurate clocks. This set of time samples can be further
pruned, with the aim of improving accuracy, by removing
all but some predetermined number of time samples that are
within the smallest distance of each other. The surviving time

samples are then combined into a single average time value.
In the event that the computed time value is “far” from the
current local time (i.e., the current local time is “stale”), the
local time is updated to reflect the new time value.

B. NTP’s Security Vulnerabilities

NTP, similarly to other Internet protocols from the same
era (e.g., BGP, TCP, DNS), was designed at a time when the
Internet was comprised of only trusted parties and security was
not a concern. NTP’s design thus reflects the need to achieve
correctness in the presence of faulty (slow/fast) clocks, not of
designated attacks [21], [24].

Indeed, as asserted by Mills [33], a key design assump-
tion was that truechimers, i.e., servers that maintain time
accuracy, are numerous, whereas “falsetickers” are rare and,
moreover, widely distributed across the measurement space.
Consequently, NTP remains extremely vulnerable to different
types of attacks.

Attackers in the NTP context can be categorized into two
main classes: (1) off-path attackers, who cannot observe (let
alone tamper with) the traffic between the NTP client and NTP
servers, and (2) man-in-the-middle (MitM) attackers, who can
eavesdrop on and manipulate traffic from client to server and
vice versa. MitM attackers might be positioned on the path
from NTP client to server (for instance, through BGP hijacking
[13], [39] or DNS hijacking [10], [16], [19]), or even be in
direct control of NTP servers.

Off-path attackers. Recent studies [24], [25] demonstrate
the ability of off-path attackers to launch denial-of-service
(DoS) attacks and also shift the local time at the client
by exploiting weaknesses in NTP’s implementation (e.g., via
spoofed Kiss-o’-Death packets). Recently introduced patches
to NTP’s implementation eliminate/mitigate some of these
vulnerabilities.

MitM attackers. What about MitM attackers? While some
forms of MitM attacks on NTP can be thwarted [24], NTP
is essentially defenseless against MitM attackers capable of
dropping, delaying, and tampering with live NTP traffic [35],
[37], [41]. Indeed, as articulated in [27]: “... the MiTM model
is too strong for NTP, because a MiTM can always bias time
synchronization by dropping or delaying packets.

While NTP supports cryptographic authentication [9], [43],
even perfect, globally deployed authentication will not prevent
a MitM attacker from shifting time through packet delays, and
also leave NTP exposed to attackers who manage to gain con-
trol of (authenticated) NTP servers. (We note that in practice
NTP traffic is very rarely authenticated anyway, as a result of
a cumbersome key-distribution mechanism, weaknesses in the
Autokey protocol for public-key authentication, and more [14],
[37], [40].)

C. Why is NTP So Vulnerable to MitM Attacks?

To enhance NTP’s security against MitM attackers we
must first identify the elements in today’s NTP architecture
(and standard implementations) that underly its vulnerability
to such attackers. We point out two such factors: (1) (typical)

3

Figure 2: NTP’s selection process

reliance on a small server pool, and (2) NTP’s algorithm for
determining the set of servers to sync to (and, in particular,
utilizing a variant of Marzullo’s algorithm [28]). We next
elaborate on each of these two elements.

NTP clients typically rely on small server pools. Today’s
NTP clients typically generate a server pool by querying DNS
for the URL pool.ntp.org. To load balance NTP servers, instead
of responding with a comprehensive list of the IP addresses
of “close” NTP servers, the response contains few (typically
at most 4) IPs, which are replaced once an hour.

Consequently, a MitM attacker capable of intercepting
traffic between the NTP client and fairly few servers can
succeed in shifting time at the client.

DNS responses are often cached, and so subsequent queries
to pool.ntp.org will often result in the exact same list of server
IP addresses. Hence, an attacker with MitM capabilities with
respect to these servers is likely to be able to preserve these
capabilities for extended periods of time.

We point out that reliance on small server pools is often
not merely “forced” on NTP clients because of insufficient
options, as described above, but is also an explicit guideline.
Indeed, as prescribed in [12]: ”For NTP Pool Project members
to work properly, the NTP daemon needs at least three servers
configured. The project recommends a minimum of four, and
no more than seven sources.”

NTP’s algorithm for selecting the “best” time samples is not
sufficiently resilient to MitM attacks. NTP clients employ a
variant of Marzullo’s algorithm to find a “majority clique of
truechimers” within the set of queries servers, [1], [31]. This
translates to seeking a set of at least half the queried servers
whose time samples are within a small distance from each
other.

The NTP specification in [1], [31] explains that this al-
gorithm “uses Byzantine fault detection principles to discard
the presumably incorrect candidates, called falsetickers, from
the incident population, leaving only good candidates, called
truechimers”. Importantly, however, Marzullo’s algorithm was
not designed to withstand malicious (Byzantine) attacks, but
to “withstand errors such as communication failures and
inaccurate clocks” [28] (in contrast to, e.g., [7], [8], [44]).
Indeed, as pointed out in [1], [31], “While not necessarily

designed to defeat determined intruders, these algorithms and
accompanying sanity checks have functioned well over the
years to deflect improperly operating but presumably friendly
scenarios.”

Marzullo’s algorithm, as adapted and employed in [1], [31],
is intended to find a small time interval such that the time
samples of a majority of the queried servers are within the
interval. Hence, when the attacker has MitM capabilities with
respect to over half of the queried servers, the client’s is at the
attacker’s mercy. In fact, a sophisticated MitM attacker might
be able to successfully launch timeshifting attacks even when
in control of a lower fraction of the queried servers, e.g., (1)
if the attacker is able to provide time samples that survive
the NTP client’s “sanity checks” while honest servers with
(fairly) accurate clocks are removed from consideration, or (2)
by taking advantage of situations in which the time samples
of honest servers with (fairly) accurate clocks (while not far
from each other) are not very closely clustered.

We point out that requiring that seeking a majority (i.e.,
at least half) of queried servers whose time samples are close
to each other (as opposed to, e.g., a third, or two thirds) is
somewhat arbitrary. This choice of threshold (50%) is intended
to strike a balance between the desire to find a time value that
a large fraction of the servers “agree on”, and the risk that, if
the threshold is set to be too high, such a time value might
not even exist .

Another vulnerability of NTP’s time-update algorithm is
derived from the fact that the local clock is updated to the
computed time value even if the new time value is “far” from
the current local time (see Figure 2). This implies that an
attacker who succeeds in contaminating the time samples can
successfully shift time at the client by many seconds, even
minutes (until the next time update occurs). See thorough
discussion in [24].

Chronos to the rescue. Chronos, our NTP client, addresses the
above two deficiencies of NTP’s architecture by (1) generating
large server pools (yet querying servers in these pools in
a communication-efficient manner), and (2) replacing NTP’s
time-sample-selection algorithm with a scheme that is provably
more resilient to attacks.

4

III. CHRONOS

The Chronos NTP client is carefully designed to achieve
the following desiderata:

• Provable security guarantees even against very pow-
erful man-in-the-middle attackers. Chronos is de-
signed to protect even against attackers capable of
compromising authenticated NTP servers.

• Backwards-compatibility with today’s NTP servers.
Chronos only involves software changes to the NTP
client and is thus easy to deploy in practice.

• Low computational and communication overhead.
Today’s NTP involves fairly little client-server com-
munication. Overloading NTP servers can result in
slower response times and, as a result, degraded
synchronization. Chronos is thus engineered to avoid
excessive overhead on both the NTP servers and the
Chronos clients.

To accomplish the above, Chronos’ design relies on trans-
lating ideas from the rich literature on time synchronization in
distributed computing into an operational reality.

We next provide a high-level overview of Chronos’ ar-
chitecture. We then elaborate on the main technical aspects
involved in Chronos’ design.

A. Overview

Our aim is to protect NTP from even the most powerful
form of MitM attacks, i.e., attackers capable of compromis-
ing fairly many (possibly authenticated!) NTP servers. Our
approach relies on a combination of several ingredients:

1) relying on many servers (in contrast to today’s NTP
clients, which effectively often rely on small server
pools),

2) querying few servers so as to avoid excessive com-
munication overhead in a manner that limits a MitM
attacker’s ability to attain a large presence within the
set of queried servers, and

3) crowdsourcing time queries across servers by
leveraging ideas from distributed computing litera-
ture [7], [8], [44]. We next discuss the algorithmic
and operational aspects involved in Chronos’ design,
and on how Chronos contends with these challenges.

Generating a large pool of NTP servers to sync to. As
discussed in Section II, an NTP client gathers time samples
from a pool of servers, which are then used to generate a new
local time. Today’s NTP clients typically rely on a small pool
of servers (e.g., 4−7 [12]), rendering them vulnerable to MitM
attacks. Chronos, in contrast, generates a large server pool (in
the order of hundreds) per client so as to set a very high
threshold for a MitM attacker, effectively forcing the attacker
to gain control of the traffic between the clients and a large
fraction of the servers so as to be successful.

While a large server pool can be generated in multiple ways
(e.g., fed into Chronos by a trusted party), to avoid the need

for coordination with others, Chronos clients can also locally
utilize a simple approach leveraging DNS queries to create
server pools that consist of hundreds of servers. We detail the
specifics of this approach below and empirically evaluate its
success in Section V-A .

Querying a small subset of the server-pool. While Chronos’
security guarantees rely on generating a large server pool per
client, as explained above, querying each and every server
in the server pool is not advisable, as this will result in
excessive overhead. Thus, Chronos is designed to strike a
delicate balance between communication and server load and
the attained security level. We prove that randomly querying a
small fraction of the servers in the server pool, as few as 15,
suffices for attaining very good security guarantees.

Sifting through the collected time samples. After gathering
time samples from a subset of the server pool, Chronos
discards “outliers” in the following manner: Suppose that m
per server samples are gathered. Chronos discards the d lowest-
value time samples and the d highest-value time samples for
some predetermined constant d. Chronos next examines the
remaining time samples and ensures that the following two
conditions are satisfied:

1) every two surviving time samples are “close” to each
other

2) the average time value of the surviving samples is
“close” to the local time at the client.

In the event that the above two conditions are satisfied,
Chronos updates the local time to be the average time value
across all m−2d time samples. Otherwise, the time samples are
discarded and the server pool is re-sampled in the exact same
manner. In the extreme scenario that the number of times the
pool is re-sampled exceeds a certain “Panic Trigger”, Chronos
enters a “Panic Mode”, which involves sampling all servers in
the pool.

Intuitively, this simple scheme, which resonates classical
ideas in distributed computing theory [7], [8], [44], poses a
challenge for the attacker, as explained next. Suppose that
the attacker manages to manipulate the time samples of a
fairly large fraction, yet not all, of the queried servers in the
pool. Reporting time values that are “too high” or “too low”
will result in these time samples being discarded by Chronos
and thus limit the attacker’s ability to influence Chronos’
time computation. However, reporting time values that are not
outliers and that pass Chronos’ checks implies that the reported
values are close to those reported by NTP servers that the
attacker cannot manipulate (and are hence close to the UTC).
We formalize this intuition in Section III-B.

B. Chronos Design

We next present a more detailed exposition of Chronos’
design. We first explain how Chronos generates a large server
pool. We then explain how the server pool is sampled and how
the new local time is computed.

The pseudocode for Chronos’ sampling scheme and time
computation, and the relevant terminology, are presented in
the specification of Algorithm 1 and in Table I, respectively.

5

Choosing values for the parameters described in the below
exposition of Chronos is delicate and relies on both our
formal security analysis (Section IV) and empirical analyses
(Section V). We discuss this issue in detail in the subsequent
sections.

n total number of servers in the server pool
m number of servers chosen at random from the server pool
d number of outliers removed from each end of the ordered

m samples
T the set of m − 2d samples remaining after the removal of

the 2d outliers
avg(T) the average value of the time samples in T
ω an upper bound on the distance from the UTC of the

local time at any NTP server with an accurate clock
(“truechimer”)

Θ an upper bound on the drift of the client’s local clock
[ms/sec]

∆t the client’s estimate for the time that passed since its last
synchronization to the server pool [sec]

ERR
Θ·∆t
1000

tC the current time, as indicated by the client’s local clock [sec]
K panic trigger

Table I: Relevant Notation

counter := 0;
while counter < K do

S := sample(m) // gather time samples from m
randomly chosen servers

T := bi-sided-trim(S,d) // trim d lowest and highest
values;

if (max(T)−min(T) <= 2ω) and
(|avg(T)− tC | < ERR+ 2ω then

return avg(T).
end
counter++;

end
// panic mode;
S := sample(n);
T := bi-sided-trim(S,n3) // trim bottom and top thirds;
return avg(T).

Algorithm 1: Pseudocode of Chronos’ Time Sampling
Scheme

Generating the server pool. To generate a large server
pool, our current backwards-compatible realization of Chronos
executes the following procedure. The NTP client queries
pool.ntp.org on an hourly basis for 24 consecutive hours and
generates the union of all received IP addresses. Importantly,
this is executed in the background once in a long time (e.g.,
every few weeks/months). Our empirical results in Section V-A
demonstrate that server pools consisting of hundreds of servers
can be generated in such a manner.

Sampling the server pool and removing outliers. Chronos
periodically gathers time samples from the server pool as
follows. Chronos first selects, uniformly at random, a subset of
size m of the servers in the server pool. Out of the collected
m samples, the d lowest-value samples and d highest value
samples are discarded. Our security analysis in Section IV-B
establishes that setting m to be in the range 15− 50 and d to
be m

3 yields good security guarantees.

Checking samples for consistency. Let Θ, measured in
msec/sec, be an upper bound on the drift of the local clock at
the client, i.e., the worst rate at which the correctly functioning
local clock desynchronizes from the universal time (UTC). The
current implementation of the NTP client relies on a local
estimation of Θ. Specifically, today’s NTP clients keep track
of the local clock drift (at /var/lib/ntp/ntp.drift, see, e.g., [12])
and can set Θ to be an upper bound on the locally-perceived
drift. Identifying better ways of assessing the local drift is
an interesting direction for future research. Let ∆t denote
the client’s estimation of the time, measured in seconds, that
passed since its last synchronization to the server pool. We
define the error margin ERR to be Θ·∆t

1000 .

We refer to an NTP server whose local clock is at most
at distance ω from the UTC, for some predetermined value
ω, as a truechimer. Observe that the local times at any two
truechimers can be at most 2ω away from each other. We
discuss in Section V-B how the value of ω should be set in
Chronos so as to strike a good balance between communication
overhead and security guarantees. Our empirical observations
(presented in Section V-B) suggest that setting ω to be in the
range 25 − 30ms provides both high time accuracy and good
security.

Chronos checks whether the m−2d time samples surviving
the elimination of the 2d outliers satisfy two conditions:

• The maximal distance between every two time sam-
ples does not exceed 2ω.

• The average value of the m − 2d time samples is at
distance at most ERR+2ω from the time tC indicated
by the client’s local clock.

In the event that both of these conditions are satisfied, the
local clock is updated to be the average time value. Otherwise,
m servers in the server pool are sampled again in the exact
same manner. This re-sampling process continues until the
two conditions are finally satisfied or the number of times the
servers are re-sampled exceeds a “Panic Trigger” K, in which
case, Chronos enters a “Panic Mode”.

Panic mode. Upon entering the Panic Mode, a Chronos client
queries all n servers in the server pool, orders the collected
time samples from lowest to highest and eliminates the bottom
third and the top third of the samples. The client then averages
over the remaining samples and updates the local clock to be
the computed value.

Remark I: Initializing Chronos. When a Chronos client
synchronizes to NTP servers for the first time, this involves
querying many servers, as in the above described Panic Mode.

Remark II: Accuracy. Chronos is designed to select time
samples in a manner that yields provable security guarantees
(see Section IV). Importantly, however, Chronos can easily be
augmented with today’s NTP clients “sanity checks”, aimed to
improve accuracy, minimize jitter, etc., without compromising
its security guarantees.

In fact, the only component of the NTP client’s multi-
step synchronization algorithm that is modified in Chronos is

6

the Clock Select Algorithm [1], [31]. In particular, Chronos’
sample-selection scheme, as described above, can be ap-
plied after gathering multiple time-samples from each queried
servers and removing all but the lowest-offset sample per
server as in NTP’s Clock Filter Algorithm [1], [31]). In
addition, the time-samples that survive Chronos’ removal of
top and bottom samples can be further pruned as in NTP’s
Cluster Algorithm [1], [31].

IV. SECURITY GUARANTEES

We discuss below our threat model and then present
Chronos’ security guarantees.

A. Threat Model

We consider a fairly powerful (in the NTP context) form
of man-in-the-middle (MitM) Byzantine [4] attacker. MitM
attackers in our model are capable of determining precisely the
values of the time samples gathered by the Chronos client from
a subset of the NTP servers in its server pool. Our threat model
thus encompasses a broad spectrum of MitM attackers ranging
from fairly weak (yet dangerous) MitM attackers only capable
of delaying and dropping packets to extremely powerful MitM
attackers who control authenticated NTP servers and can
perfectly time the arrival times at the client of NTP responses
from these servers.

MitM attackers captured by our framework might be,
e.g., (1) in direct control of a fraction of the NTP servers
(e.g., by exploiting a software vulnerability in a specific NTP
implementation, or through physical presence), (2) an ISP (or
other Autonomous-System-level attacker) on the default BGP
paths from the NTP client to a fraction of the available servers,
(3) a nation state with authority over the owners of NTP servers
in its jurisdiction, or (4) an attacker capable of hijacking (e.g.,
through DNS cache poisoning or BGP prefix hijacking) traffic
to some of the available NTP servers. Importantly, we abstract
away the details of the specific attack scenario by reasoning
about MitM attackers in terms of the fraction of servers with
respect to whom the attacker has MitM capabilities.

Specifically, we quantify the attacker’s MitM capabilities in
terms of a value p ∈ [0, 1] p indicates the probability, for each
and every server in the client’s server pool, that the attacker
controls that NTP server. p = 0.1, for instance, means that
the attacker controls each server with probability 0.1 and thus
controls 10% of the server pool in expectation.

We refer to servers not controlled by the attacker as
truechimers and assume that the local clock of each truechimer
is at most at distance ω from the UTC, for some predetermined
value ω (see discussion in Section V-B about good choices of
ω).

Remark I: Servers with inaccurate clocks are modeled as
controlled by the attacker. Observe that our model does not
explicitly reason about “honest” servers with inaccurate clocks
(“falsetickers” in [33]). To provide strong security guarantees,
our security analysis relies on the assumption that all non-
truechimers are controlled by an attacker who can adversarially
and arbitrarily manipulate time samples.

Remark II: Some MitM attackers are indeed too powerful
for NTP. A MitM attacker in control of a majority of the NTP
servers in the server pool can manipulate time as it pleases
under any NTP security scheme. To see this, consider the
scenario that all attacker-controlled NTP servers report the
same (false) time when queried and the timesamples of all
truechimers are precisely the UTC. Observe that this scenario
is indistinguishable, from the NTP client’s perspective, from
the scenario that the attacker-controlled servers are actually the
truechimers and vice versa.

Hence, if the attacker is, e.g., the client’s sole network
gateway (say, a compromised home router), then no level of
security is achievable. Thus, the security of any NTP client
is subject to the assumption that the attacker does not have
MitM capabilities with respect to “too many of the servers”.
Our results below show that Chronos is capable of providing
meaningful security guarantees even with respect to MitM
attackers in control of a large fraction (e.g., one third) of the
servers.

B. Security Analysis

We present below the security analysis of Chronos’ time
computation scheme. We first present an illustration of the
established security guarantees for reasonable choices of pa-
rameters (see discussion of parameter values in the remainder
of this section and in Section IV-E): n = 500, m = 15, d = 5,
ω = 25ms, K = 4, and p = 1

7 .

Theorem 4.1: When n = 500, m = 15, d = 5, ω = 25ms,
K = 4, p = 1

7 , Err = 50ms, and the Chronos client
synchronizes once an hour:

1) To succeed in shifting time at a Chronos client by at
least 100ms from the UTC, the attacker requires at
least 22 years in expectation.

2) To succeed in creating a time difference of at least
100ms between two Chronos clients, the attacker
requires at least 11 years in expectation.

The proof of Theorem 4.1 follows from plugging in the
above parameters into the security analysis presented below.

Since local clocks tend to drift, NTP clients must synchro-
nize with NTP servers periodically so that the time distance
from the UTC does not exceed a certain bound. The length of
the time interval between synchronization periods is set to be
such that, despite the drift, the local clock is still within some
desired range from the UTC. See [6] for a thorough analysis
of how to set this value. To simplify exposition, our analysis
below assumes that synchronization occurs frequently (say, on
an hourly basis, as with today’s NTP clients), and so ignores
drift-related factors.

To gain intuition into Chronos’ security guarantees, con-
sider first a single application of Chronos’ time sampling
scheme (we later discuss the effect of multiple re-samplings
and of the Panic Mode). As explained in Section III-B, the
Chronos client queries m servers, chosen uniformly at random
from a server-pool of size n. Suppose that an attacker controls
some of the servers in the server-pool. We next consider

7

Figure 3: Case I, scenario I: all truechimers’ time samples are
discarded

Figure 4: Case I, scenario II: at least one of the m − 2d
surviving time samples is of a “truechimer”.

the spectrum of feasible attack scenarios so to evaluate the
effectiveness of Chronos in thwarting timeshifting attacks.

• Case I: Less than m − d of the queried servers
are under the attacker’s control. Observe that, in
this scenario, since at least d+ 1 of the time samples
are reported by truechimers, the attacker is faced with
a choice between two strategies: (1) reporting time
values so that all truechimers’ time samples are dis-
carded by Chronos (this is only feasible if the attacker
controls sufficiently many servers), and (2) reporting
time values such that at least a single truechimer’s
sample survives Chronos’ sample elimination.
Now, consider the first of these two scenarios. As the
attacker controls less than m − d of the m sampled
servers, at least d + 1 of the servers are truechimers.
Since Chronos discards the d bottom samples and the
d top samples, the elimination of all d+1 truechimers
samples implies that at least a one truechimer’s sample
is at the bottom d values and at least a one honest
sample is at the top d values. Figure 3 illustrates this
scenario. Consequently, all surviving m− 2d samples
must be between two truechimers samples. However,
this implies that all these samples are at most ω-away

Figure 5: Case II: all surviving m − 2d samples are reported
by the attacker

from UTC and consequently, the average value is also
within ω distance from the UTC. Hence, this attack
strategy is ineffective.
Consider next the scenario that not all truechimers’
samples are discarded, i.e., at least a single
truechimer’s sample survives the elimination. Since
Chronos checks that every two surviving samples are
at distance no more than 2ω from each other, for the
attacker to pass this test all bogus samples must be
within this distance from this truechimer’s sample and,
consequently, so is the average value. Hence, again,
this attack strategy is ineffective. Figure 4 illustrates
this scenario.

• Case II: At least m − d of the queried servers
are under the attacker’s control. Observe that, in
this scenario, the attacker can dictate the computed
average time value simply by ensuring that all (at
most d) truechimers’ samples are within the d lowest
time samples or that all truechimers’ samples are
within the d highest samples. Figure 5 illustrates this
scenario. We show below, however, that this happens
with tiny probability. We stress, moreover, that even
if the attacker succeeds in controlling at least m − d
of the queried servers, Chronos’ validation that the
average time value is not “too far” from the local time
implies that the attacker cannot shift the local time by
“too much”, namely, more than Err+2ω. This implies
that the attacker must succeed in attaining such large
presence in the sampled set multiple times to cause
significant time shifts. We discuss this further below.

Let Y be the random variable that captures the number of
servers controlled by the attacker in the set of m randomly
chosen servers queried by the Chronos client. The probability
that the attacker controls r servers in the m samples is:

PY =r = Pr = pr · (1− p)m−r ·
(
m

r

)
(1)

Hence, the probability that the attacker controls more than

8

Figure 6: Probability that the attacker controls at least m− d
samples in one sampling iteration

Figure 7: Probability that the attacker controls at least m− d
samples in one sampling iteration (log scale)

k1 servers and at most k2 servers is:

P (k1 < Y ≤ k2) = P(k1,k2] =

k2∑
k=k1+1

pk · (1− p)m−k ·
(
m

k

)
(2)

The probability that the number of attacker-controlled
servers is at least m− d (Case II above) is thus:

P(m−d,m] =

m∑
k=m−d+1

pk · (1− p)m−k ·
(
m

k

)
(3)

Figure 6 plots the numerical results of Equation 3 when
d = m

3 for different values of p (Figure 7 shows the values in
a log-scale). As is clear from the figure, even for fairly low

Figure 8: Probability that the attacker controls at least m− d
samples in two sampling iterations

values of m the probability is tiny. We set d = m
3 since this

value provides the highest level of security in this context [6],
[15], [44].

Recall, however, that (when not in Panic Mode) Chronos
only updates the local clock at the client if the newly computed
time value is “close” to the local time, i.e., at distance at most
Err + 2ω. Hence, even if the attacker-controlled servers in
the sample constitute at least two thirds, the attacker cannot
change the local time by “too much” (otherwise the server pool
is re-sampled). Hence, to succeed in significantly shifting the
time at the client, the attacker must succeed in controlling at
least two thirds of the sampled servers in several server-polls.
The probability of succeeding in doing so two times is upper
bounded by P 2

(m−d,m], which, as illustrated in Figure 8, is
negligible.

Upon reaching Panic Mode, Chronos queries all servers in
the server pool. The analysis of this scenario is equivalent to
substituting m with n in Equation 3 (as now the sampled set
consists of all servers in the server pool). Thus, so long as
the attacker’s MitM capabilities are below p = 1

3 , for large
values n, e.g., in the order of hundreds, the attacker’s ability
desynchronize the client is practically nonexistent.

C. Selecting d

Intuitively, the choice of value for d, i.e., of the number of
top samples and bottom samples to discard, involves a tradeoff:
the lower the value of d, the easier it is for the attacker to
“contaminate” at least one of the time samples that survive
Chronos’ elimination of the d highest and d lowest time-
values (by controlling at least d+1 of the m sampled servers);
the higher the value of d, the easier it is for the attacker to
contaminate all these samples (by controlling at least m − d
of the sampled servers). What should the value of d be then?

To formalize the above, suppose that the attacker controls
αn of the servers in the server pool. Then, asymptotically, so
long as d > αm, the attacker’s probability of being in control

9

Figure 9: The attacker’s probability, for different values of d,
of injecting m − d bad samples into the sample set when n

3
of the servers in the server pool are under his control.

of at least d + 1 of the sampled servers goes to 0 as m is
increased; the higher the value of d the lower this probability is.
In addition, so long as d < m(1−α), the attacker’s probability
of being in control of at least m−d of the sampled servers goes
to 0 as m is increased; the lower the value of d the lower this
probability is. To illustrate the latter point, consider Figure 9,
which plots the attacker’s probability of injecting m − d bad
samples when in control of n

3 of the servers in the server pool.
Observe that, as expected, the lower the value of d the lower
the attacker’s success probability is.

We find that choosing d = m
3 is a reasonable choice (both

theoretically and empirically), as whenever the attacker is in
control of strictly less than n

3 of the hundreds of servers in the
server pool (a fairly conservative assumption), its probability
of contaminating the samples is low.

D. Chronos Client vs. Today’s NTP Clients

As discussed in Section II-C, today’s NTP clients are vul-
nerable to MitM attacks for two main reasons: (1) reliance on
a small server pool and (2) utilizing an algorithm for selecting
time sample that is not sufficiently resilient to Byzantine MitM
attackers. Chronos addresses the first issue by generating a
large server pool (yet carefully querying fairly small sets of
servers so as to be efficient). To address the second issue,
Chronos replaces NTP’s algorithm for time-sample selection,
which extends Marzullo’s algorithm, with an algorithm that
leverages ideas from the literature in distributed computing on
time synchronization in the presence of Byzantine attackers
(as described above).

We now focus on analyzing in isolation the security benefits
of Chronos’ sample-selection algorithm by comparing Chronos
to standard NTP clients when the size of the queried server set
is identical for both (i.e., the standard NTP client to generate
a large server set, as in Chronos, and its parameters are tuned
so as to).

Figure 10: Probability that the attacker controls at least half of
the queried servers (and can thus successfully attack today’s
NTP clients) in one sampling iteration

Figure 11: The ratio (in log scale) between the probability
that the attacker controls at least half of the queried servers
(and can thus successfully attack today’s NTP clients) and the
probability that the attacker controls two thirds of the queried
servers (and can thus successfully attack Chronos for d = m

3)
in one sampling iteration

As explained in Section IV-A, an attacker with MitM
capabilities with respect to a very large fraction (e.g., over
half) of the NTP servers can successfully shift time under any
NTP security scheme. Our focus is thus on attack scenarios
in which the fraction of the server pool controlled by the
attacker is smaller. We show below that Chronos significantly
outperforms today’s NTP clients even when the attacker is in
control of a fairly large (e.g., one third) of the NTP servers.

10

Recall (from Section II-C) that an attacker in control of
at least a half of the servers queried by today’s NTP clients
can ensure that its time samples are used to synchronize the
local clock at the client. In fact, as explained in Section II-C,
in practice a sophisticated attacker can exploit NTP’s “sanity
checks” for servers and the fact that not all truechimers are
perfectly aligned, to successfully launch attacks even with
fewer queried servers under his control. In addition, recall (see
discussion in Section II-C) that, unlike Chronos, today’s NTP
clients allow the attacker to report time values that are far from
the local clock without triggering alarms (whereas in Chronos
this results in re-sampling the server pool). In our comparison
of Chronos to today’s NTP client, discussed below, we make
the assumption that the attacker can launch a successful attack
on today’s NTP clients only if 50% or more of the queried
servers are his. We also ignore the extent to which the local
clock value is shifted if the attacker is successful. Thus, our
results for today’s NTP clients greatly overestimate the ability
of these clients to thwart MitM attacks. Still, as our analysis
below indicates, Chronos is significantly more secure than
today’s approach.

Suppose that the attacker controls a third of the servers
in the server pool, i.e., n

3 and 8 servers are queried out of
a pool of 500 servers. The probability that at least half of
the queried servers are under the attacker’s control is fairly
high (0.25), as can be seen in Figure 10. Importantly, even
fairly low probabilities of success in attacking NTP translate
to increasingly higher success probabilities as the number
of sampling iterations grows, enabling a patient attacker to
succeed eventually. (This is addressed in Chronos through the
introduction of the Panic Mode, in which the attacker’s success
probability is effectively 0).

As discussed in Section IV-B, successful attacks on
Chronos involve the attacker gaining control of d−m of the
queried servers. Figure 11 presents the log ratio between the
probability that the attacker controls at least half of the servers
(and can so successfully attack today’s NTP client) and the
probability that the attackers controls d−m samples (and can
so successfully attack Chronos), for d = m

3).

Let us revisit the above example of querying 8 servers out
of a pool of 500 when the attacker controls n

3 of the servers in
the pool. The probability of successfully attacking Chronos is
significantly lower (13×) than the probability of successfully
attacking today’s NTP clients. Observe that Chronos’ security
gains in comparison to today’s NTP only increase as the
number of queried servers is increased. Again, the results
in Figure 11 should be regarded as a strict lower bounds
on the improvement of Chronos, in terms of security, over
today’s NTP clients, as in practice a MitM attacker need not
necessarily control such a large fraction of the queried servers
to succeed in shifting time at the client.

The reader might wonder about whether the following
alternative approach to “fixing” NTP’s insecurity is useful:
NTP’s time-sample-selection algorithm can be altered so that,
instead of seeking a time value that is (approximately) agreed
upon by the majority of queried servers, a larger fraction of
servers (say, two thirds) be required, thus setting a higher bar
for the attacker. This is, however, not a feasible strategy for
enhancing NTP’s security. Indeed, recall (from Section II-C)
that increasing the threshold of queried servers that must be

in agreement might result in the NTP client not finding any
agreed upon value, even when not attacked, as such point might
not even exist. This will, in turn, result in not updating the
local time at the client at all. Chronos’s scheme for pruning
time values, in contrast, sets a high bar for the attacker without
running this risk.

E. Attacking Chronos by Creating Overhead

Our above analysis focused on the attacker’s ability to
shift time at the client. We now investigate a different attack
strategy: generating communication overhead. Now, instead of
shifting time, the attacker’s desire is to overload NTP servers.
The motivation for launching such attacks might be using
Chronos clients to amplify denial-of-service attacks while
preventing the attacked servers from tracing the attack back to
the nefarious origin. We show below, however, that utilizing
Chronos clients in this manner is largely ineffective.

As explained above, the considered attack is intended to
create overhead and so the attacker’s goal is to lead the
Chronos client to re-sample the server pool multiple times and,
eventually, enter Panic Mode and query all servers in the pool.
The maximum number of re-samplings allowed before entering
Panic Mode is specified by the Panic Trigger K.

We point out that so long as Panic Mode is not reached,
Chronos’ overhead is comparable to that of today’s NTP
clients. By default, NTP client-to-server synchronization takes
place each hour. Today’s NTP clients sync to few servers (e.g.,
4−7 [12]) and collect multiple (e.g., 8 [24]) samples from each
server. Chronos, in contrast, queries more servers but does not
need to query each server multiple times. Hence, so long as
Panic Mode is not reached, for reasonable values of m and K,
e.g., m = 15 and K = 4, the total number of queries cannot
exceed m(K − 1) = 45.

So, to succeed in generating considerable overhead, the
attacker need to be able to force the client into Panic Mode.
Observe, however, that this can only occur in the event that at
least d+ 1 attacker-controlled NTP servers are chosen in each
and every one of the K − 1 sampling iterations that occur
prior to the panic mode. This only occurs with probability
(P(d+1,m])

K−1 = (1−P[0,d])
K−1. When m = 15 and K = 4,

this probability equals 2 · 10−6. Thus, if synchronization takes
place once an hour, 5 · 105 hours are required, in expectation,
for the attacker to succeed in reaching Panic Mode.

V. EMPIRICAL ANALYSES

Chronos’ security guarantees rely on generating a large
server pool per client. We explained in section III-B how such
a server pool can be generated in practice in a backwards
compatible manner and without coordination with others. We
investigate the application of this approach in practice below.

Recall also that the security of Chronos is quantified in
terms of ω, an upper bound on the distance between any
truechimer and the UTC. Choosing a value for ω is challeng-
ing; setting the value to be “too low” might result in Chronos
treating many honest NTP servers (whose local clocks are
more than ω away from the UTC) as attackers; setting the value
to be “too high”, in contrast, yields poor security guarantees.
Ideally, ω should be a low value such that the vast majority

11

Figure 12: CDF chart presenting percentage of samples within
specified distance of the poll’s average.

Figure 13: Average delay of NTP servers, as measured in each
region

of honest NTP servers are within ω distance of the UTC. We
embark on an empirical investigation of how the value of ω
should be chosen.

To address the above challenges, we implemented a proto-
type version of Chronos in Python using the SNTP library (a
“Simple NTP” client capable of querying a specific NTP server
by IP and extract the relevant data from its reply). We ran our
Chronos implementation on Amazon AWS (EC2) machines
in 6 different regions: 3 in the USA (California, Ohio and
Virginia) and 3 in Europe (Frankfurt, London and Ireland).
We report on our findings below.

A. Generating the Server Pool

Generating large server pools. We ran the 24-hour server-
pool generation process detailed in Section III-B from multiple
EC2 machines in the US (West Coast) and Europe. Our
experiments resulted in 300− 600 NTP server IPs per region,
thus demonstrating that a large server pool can indeed be
generated in such a manner. (See details about the NTP servers
in each region at pool.ntp.org).

Precision vs. delay. Some NTP protocol versions eliminate

Figure 14: Number of servers with average delay less than
50ms in each region

Figure 15: CDF chart presenting number of servers within
specified delay bound in the Virginia region.

servers from consideration if the delay (RTT) values for these
servers exceed a certain threshold [1]. The guiding logic is
that the values measured for closer (delay-wise) servers are
more accurate, resulting in more accurate time updates. We
show below that large server pools can be generated even when
discarding servers with high delays.

We first point out, however, that for Chronos clients, in
general, delay thresholds are much less meaningful than for
standard NTP clients. The reason is that Chronos crowdsources
time queries across many NTP servers, which gives rise to
accurate time measurements, as explained next. Figure 12 plots
a CDF of the distance of a time sample from the average of all
time samples collected in Frankfurt (results for other regions
exhibit similar trends). As can be seen in the figure, 96% of
values are within only 20ms difference of the average value.
Hence, when sampling a large enough fraction of the servers
(as in Chronos), the average value is expected to be very close
(with very high probability) to the global average.

Figure 13 plots the average delay and standard deviation
for queried servers in different regions across multiple (2000)
queries. As can be seen in the figure, the delay in Europe
is, in general, much lower than in the US. Indeed, even after
discarding all servers in the server pool with delay > 50ms, the

12

Figure 16: β as a function of x
n

server pool for the Chronos clients in Europe still consists of
hundreds of servers, as described in Figure 14. Also, examining
the delay values and distribution shown in Figure 13 reveals
that setting a delay threshold of, say, 80ms, is sufficient to
obtain large server pools in California and Ohio, containing
the majority of available NTP servers in these regions. We turn
our attention to Virginia, which exhibits the highest average
delay. Figure 15 depicts a CDF. As shown in the figure, setting
the delay threshold to be 80ms yields a server pool of only
90 servers, whereas a threshold of 107ms yields a pool of
300 servers. We conclude that the desired delay threshold
varies across geographical regions and that, in general, a delay
threshold lower than 100ms enables the generation of very
large server pools.

B. Choosing ω

Bounding inter-sample distances. Recall that Chronos, after
sampling the server pool, discards the highest and lowest sam-
ples and then checks that the distance between the highest and
lowest surviving samples does not exceed a certain threshold
(specifically, 2ω). Our aim is to gain empirical insights into
what would be a reasonable threshold to set.

We examine each of the 2000 all-server-sample sets and,
for each such collection of samples, remove the x lowest-
offset-value and x highest-offset-value samples for varying
values of x. We refer to the distance between the lowest and
highest surviving samples as β.

Figure 16 plots the average value of β, across all exper-
iments, as a function of x

n , i.e., of the fraction of samples
removed (from each end) from the total number of queried
servers. Observe that when x

n = 0.33, i.e., two thirds of
the samples are removed, β < 4ms. Observe also that when
x
n = 0.033, i.e. after removing 6.6% of the samples, β is
always below 50ms (with a maximum difference of 25ms
between regions). As these results indicate, even setting x to be
very low with respect to the size of the sample n, i.e., when
only the very lowest and very highest values are discarded,

time values from servers are expected to be fairly close to
each other.

Selecting ω. The above has direct implications for setting the
value of ω. Suppose that the goal is to protect from an attacker
capable of gaining control of, e.g., 10% of the hundreds
of servers in the server pool (and moreover, controlling the
servers with the most accurate clocks). Setting ω to be, e.g.,
25ms, implies that, over 83% of the servers (on average)
are honest servers whose clocks are all within 2ω = 50ms
from each other. Hence, setting ω to be in the order of 10s
of milliseconds yields both high accuracy and strong security
guarantees.

VI. RELATED WORK

NTP’s insecurity. The network time protocol (NTP) [14], [32],
designed by Mills [34], is one of the Internet’s oldest protocols.
Already in 1985, in the context of the development of the
Kerberos security model, NTP’s inadequacy for achieving
secure time synchronization was pointed out [34].

Recent years have witnessed renewed interest in NTP
security. See taxonomy of attacks against NTP in [37]. Re-
cent studies [24], [25] demonstrated the ability of even off-
path attackers to launch denial-of-service (DoS) attacks and
timeshifting attacks against NTP by exploiting weaknesses in
NTP’s implementation (e.g., via spoofed Kiss-o’-Death pack-
ets). Recently introduced patches to NTP’s implementation
eliminate/mitigate some of these vulnerabilities [1].

Today’s NTP is effectively defenseless against Man-in-the-
Middle (MitM) attackers capable of dropping, delaying, and
tampering with client-server traffic (see section II).

Approaches to securing NTP. Although NTP supports crypto-
graphic authentication [9], [43], in practice NTP traffic is very
rarely authenticated [24], as a result of a cumbersome key-
distribution mechanism, weaknesses in the Autokey protocol
for public-key authentication, and beyond [14], [37], [40]. “Au-
tokey (RFC 5906) public-key encryption scheme vulnerability
issues too severe to be patched” motivated the development of
NTPsec [2], implemented in 2015 [22].

Still, today’s usage of NTPsec is very low and, more
importantly, encryption and authentication do not prevent
MitM attacks, as such attacks can rely simple on delaying
and dropping (encrypted) traffic and, moreover, even perfect,
globally deployed authentication will leave NTP exposed to
attackers that gain control of (authenticated) NTP servers.

Another approach to NTP security is utilizing path re-
dundancy on the Internet to avoid MitM attackers [36], [42].
Under this approach, multiple network paths are used to
connect client and server. Chronos, in contrast, generates server
redundancy through the creation of large server pools and
carefully samples servers in these pools. Chronos is also
designed to contend with a stronger notion of MitM attacker
than that considered in [36], [42]; the threat model for Chronos
considers an attacker in control of NTP servers, as opposed to
a MitM attacker on a specific single path from the client to
a server. Lastly, generating multiple disjoint Internet paths for

13

client-server communication, as proposed in [36], [42], is a
nontrivial task in practice.

Clock synchronization in distributed computing theory.
Synchronizing clocks in a distributed system has been central
to distributed computing research from its early days [20]. The
early work of Cristian [5] influenced the design of the clock
synchronization protocols that are still in use. The specific
clock synchronization protocol used in NTP was suggested
by Marzullo [28]–[30].

The topic of fault tolerant clock synchronization has also
been the subject of much attention [6], [15], [44]. The idea
of using approximate agreement [7], [8] to synchronize clocks
was introduced in [44]. We point out, however, that the above
mentioned fault tolerant protocols assumed a relatively small
group of processors and were not designed to operate at Inter-
net scale. Chronos relies on the adaptation ideas from this rich
body of literature to the context of NTP time synchronization.
This involves contending with challenges such as maintaining
backwards compatibility, avoiding excessive overhead, and
beyond.

VII. CONCLUSION AND FUTURE RESEARCH

We presented Chronos, an NTP client designed to enable
secure time synchronization in a backwards compatible, easily
deployable manner, and without involving excessive commu-
nication overhead. We view Chronos as a promising approach
for securing NTP in a way that sidesteps the many obstacles
facing prior approaches.

We leave the reader with interesting directions for future
research. We list a few of these directions below.

• Chronos’ time synchronization guarantees. Our
primary motivation in designing Chronos was pre-
venting timeshifting attacks. We conjecture, however,
that as Chronos relies on more time samples than
today’s NTP clients and also crowdsources queries
across multiple servers, Chronos might improve upon
today’s NTP clients also in terms of time accuracy.
We leave this question for future research. We do
point out, however, that our results in section V-A
(see Figure 12) suggest that the majority of servers
in Chronos’ server pools exhibit local times that are
very close to each other. This suggests that averaging
over the clock values of many servers is a reasonable
approach for attaining time accuracy.

• Better security guarantees. Our analysis of Chronos’
security guarantees was aimed merely to set an upper
bound on the attacker’s probability of success, show-
ing that it is negligible. We believe that deeper in-
vestigation of the Chronos approach (the implications
of parameter setting, more nuanced probabilistic anal-
yses, and more) could lead to better formal security
guarantees.

• Upper bounds on the security guarantees of NTP
security schemes. Our results establish that Chronos
significantly outperforms today’s NTP clients in terms
of resilience to MitM attacks. How close, however, is

Chronos to the optimal level of security achievable
via such security schemes? Answering this question
requires setting upper bounds on the level of security
attainable by any backwards-compatible NTP client
design. Consider a model in which an NTP client can,
as in our framework, repeatedly query a server pool
(of legacy NTP servers) of size n and is limited to
some (expected) number of queries x per time-update
round. What are the optimal security guarantees of
deterministic/randomized time-sampling schemes as a
function of n, x, and the fraction of the server pool
controlled by the attacker?

• Weighing servers according to reputation. Chronos’
time sampling scheme treats all servers in the server
pool as equal both when sampling and when averaging
over samples. Another approach might be to weigh
servers differently according to their reliability (e.g.,
assign higher weights to servers with GPS clocks),
trustworthiness (e.g., servers controlled by trusted
parties), and past behavior (e.g., servers with good
“reputation” from past sampling iterations).

• Benefits from changes to the server-side. A key
principle guiding Chronos’ design is not relying on
changes to NTP servers (only to the client side).
This is needed, in our view, to render deployment
easier and more realistic. Understanding, however, the
implications for security of being able to modify (e.g.,
a small number of NTP servers) is of value and might
prove beneficial.

• Extending our approach to other time-
synchronization protocols. To improve upon
NTP’s time-accuracy guarantees, other approaches,
such as PTP [11], [45], have been designed. While
our focus is on NTP, application of our high-level
approach to other time-synchronization protocols
might aid in securing these alternate schemes.

We advocate the further exploration of the merits and limi-
tations of Chronos, and the further investigation the feasibility
of this new path to NTP security.

ACKNOWLEDGEMENTS

We thank the Cyber Security Research Center at Hebrew
University, in conjunction with the Israeli National Cyber
Bureau (INCB) in the Prime Minister’s Office, for financial
support. We also thank the INCB for helpful discussions. We
thank the anonymous reviewers and Vyas Sekar for valuable
comments. Michael Schapira and Neta Rozen Schiff are sup-
ported by an ERC Starting Grant.

REFERENCES

[1] Ntp version 4.2.8p9 code, November 2016.
[2] The secure network time protocol (ntpsec) distribution, April 2017.
[3] ANDREEVA, O., GORDEYCHIK, S., GRITSAI, G., KOCHETOVA, O.,

POTSELUEVSKAYA, E., SIDOROV, S. I., AND TIMORIN, A. A. Indus-
trial control systems vulnerabilities statistics. Tech. rep., Kaspersky lab,
2016.

14

[4] AWERBUCH, B., CURTMOLA, R., HOLMER, D., NITA-ROTARU, C.,
AND RUBENS, H. Mitigating byzantine attacks in ad hoc wireless
networks. Tech. rep., Department of Computer Science, Johns Hopkins
University, Tech, 2004.

[5] CRISTIAN, F. Probabilistic clock synchronization. Distributed Com-
puting 3, 3 (1989), 146–158.

[6] DOLEV, D., HALPERN, J. Y., SIMONS, B., AND STRONG, R. Dynamic
fault-tolerant clock synchronization. J. ACM 42, 1 (Jan. 1995), 143–185.

[7] DOLEV, D., LYNCH, N. A., PINTER, S. S., STARK, E. W., AND
WEIHL, W. E. Reaching approximate agreement in the presence of
faults. In Third Symposium on Reliability in Distributed Software and
Database Systems, SRDS 1983, Clearwater Beach, FL, USA, October
17-19, 1983, Proceedings (1983), IEEE Computer Society, pp. 145–154.

[8] DOLEV, D., LYNCH, N. A., PINTER, S. S., STARK, E. W., AND
WEIHL, W. E. Reaching approximate agreement in the presence of
faults. J. ACM 33, 3 (1986), 499–516.

[9] DOWLING, B., STEBILA, D., AND ZAVERUCHA, G. Authenticated
network time synchronization. In 25th USENIX Security Symposium
(USENIX Security 16) (Austin, TX, 2016), USENIX Association,
pp. 823–840.

[10] DUAN, H., WEAVER, N., ZHAO, Z., HU, M., LIANG, J., JIANG, J.,
LI, K., AND PAXSON, V. Hold-On: Protecting against on-path DNS
poisoning. In Securing and Trusting Internet Names (2012), National
Physical Laboratory.

[11] ESTRELA, P. V., AND BONEBAKKER, L. Challenges deploying ptpv2
in a global financial company. In 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings (September 2012), pp. 1–6.

[12] GERSTUNG, H. How to configure ntp for use in the ntp pool project
on ubuntu 16.04, May 2017.

[13] GOLDBERG, S. Why is it taking so long to secure internet routing?
Queue 12, 8 (Aug. 2014), 20:20–20:33.

[14] HABERMAN, B., AND MILLS, D. Rfc 5906: Network time protocol
version 4: Autokey specification. internet engineering task force (ietf),
2010.

[15] HALPERN, J. Y., SIMONS, B., STRONG, R., AND DOLEV, D. Fault-
tolerant clock synchronization. In Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing (New York,
NY, USA, 1984), PODC ’84, ACM, pp. 89–102.

[16] HERZBERG, A., AND SHULMAN, H. Fragmentation Considered Poi-
sonous: or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The
Conference on Communications and Network Security. (2013).

[17] HOCH, D. Integrating sun kerberos and microsoft active directory
kerberos, 2005.

[18] HODGES, J., AND JACKSON, C. Http strict transport security (hsts),
November 2012.

[19] KAMINSKY, D. It’s the end of the cache as we know it. In Black ops
2008, Black Hat USA.

[20] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565.

[21] LEE, K. S., WANG, H., SHRIVASTAV, V., AND WEATHERSPOON, H.
Globally synchronized time via datacenter networks. In Proceedings of
the 2016 Conference on ACM SIGCOMM 2016 Conference (New York,
NY, USA, 2016), SIGCOMM ’16, ACM, pp. 454–467.

[22] LISKA, A. NTP Security: A Quick-Start Guide. Apress, 2016.
[23] LTD, N. M. Time traceability for the finance sector. Tech. rep., NPL

Management Ltd, United Kingdom, March 2016.
[24] MALHOTRA, A., COHEN, I. E., BRAKKE, E., AND GOLDBERG, S.

Attacking the network time protocol. IACR Cryptology ePrint Archive
2015 (2015), 1020.

[25] MALHOTRA, A., AND GOLDBERG, S. Attacking ntp’s authenticated
broadcast mode. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016),
12–17.

[26] MALHOTRA, A., GUNDY, M. V., VARIA, M., KENNEDY, H., GARD-
NER, J., AND GOLDBERG, S. The security of ntp’s datagram protocol.
IACR Cryptology ePrint Archive 2016 (2016), 1006.

[27] MALHOTRA, A., GUNDY, M. V., VARIA, M., KENNEDY, H., GARD-
NER, J., AND GOLDBERG, S. The security of ntp’s datagram protocol.
Tech. rep., 2016.

[28] MARZULLO, K., AND OWICKI, S. Maintaining the time in a distributed
system. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing (New York, NY, USA, 1983),
PODC ’83, ACM, pp. 295–305.

[29] MARZULLO, K. A. Maintaining the time in a distributed system. Tech.
rep., Xerox, 1984.

[30] MARZULLO, K. A. Maintaining the Time in a Distributed System:
An Example of a Loosely-coupled Distributed Service (Synchronization,
Fault-tolerance, Debugging). PhD thesis, Stanford, CA, USA, 1984.
AAI8506272.

[31] MILLS, D. How ntp works, 2014.
[32] MILLS, D., MARTIN, J., BURBANK, J., AND KASCH, W. Rfc 5905:

Network time protocol version 4: Protocol and algorithms specification.
internet engineering task force (ietf), 2010.

[33] MILLS, D. L. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications 39 (1991), 1482–1493.

[34] MILLS, D. L., MAMAKOS, L., AND PETRY, M. Network Time Protocol
(NTP). RFC 958, sep 1985.

[35] MIZRAHI, T. A game theoretic analysis of delay attacks against time
synchronization protocols. In 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings (Sept 2012), pp. 1–6.

[36] MIZRAHI, T. Slave diversity: Using multiple paths to improve the
accuracy of clock synchronization protocols. In 2012 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Measurement,
Control and Communication Proceedings (Sept 2012), pp. 1–6.

[37] MIZRAHI, T. Rfc 7384 (informational):security requirements of time
protocols in packet switched networks, October 2014.

[38] NOVICK, A. N., AND LOMBARDI, M. A. Practical limitations of ntp
time transfer. In 2015 Joint Conference of the IEEE International
Frequency Control Symposium the European Frequency and Time
Forum (April 2015), pp. 570–574.

[39] PETERSON, A. Researchers say u.s. internet traffic was re-routed
through belarus. that’s a problem., November 2013.

[40] ROTTGER, S. Analysis of the ntp autokey procedures. master’s thesis,
technische universitt braunschweig, 2012.

[41] SELVI, J. Bypassing http strict transport security. In Black Hat Europe
(2014).

[42] SHPINER, A., REVAH, Y., AND MIZRAHI, T. Multi-path time pro-
tocols. In 2013 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication (ISPCS)
Proceedings (Sept 2013), pp. 1–6.

[43] TIME, N., AND DIVISION, F. The nist authenticated ntp service, 2010.
[44] WELCH, J. L., AND LYNCH, N. A. A new fault-tolerance algorithm

for clock synchronization. Inf. Comput. 77, 1 (1988), 1–36.
[45] WOLFE, M. Improving network timing in financial institutions: Regu-

latory imperative or opportunity to achieve operational excellence? In
The ATIS Workshop on Time Sync in Financial Markets (November
2016).

15

