Preventing (Network) Time Travel with Chronos

Omer Deutsch, Neta Rozen Schiff, Danny Dolev, Michael Schapira

THE HEBREW UNIVERSITY OF JERUSALEM

Network Time Protocol (NTP)

- NTP synchronizes time across computer systems over the Internet.
- Many applications rely on NTP for correctness and safety:
 - ➤TLS certificates
 - ►DNS (and DNSSEC)
 - ≻HTTPS
 - ≻Kerberos
 - ➢ Financial applications

Time is Important for Certification

https://www.nanog.org/

Time is Important for Certification

https://www.nanog.org/

Time is Important for Certification

https://www.nanog.org/

NTP Architecture

• NTP's client-server architecture consists of two main steps:

1. Poll process:

The NTP client gathers time samples from NTP servers

NTP Architecture

• NTP's client-server architecture consists of two main steps:

1. Poll process:

The NTP client gathers time samples from NTP servers

2. <u>Selection process</u>:

The "best" time samples are selected and are used to update the local clock

> Poll process: NTP responses: Selection process:

NTP Man-in-the-Middle (MitM) Attack

- NTP is highly vulnerable to time shifting attacks, especially by a MitM attacker
 - Can tamper with NTP responses
 - Can impact local time at client simply by dropping and delaying packets
 - to/from servers (encryption and authentication are insufficient)

• Previous studies consider MitM as "too strong for NTP"

Why is NTP so Vulnerable to MitM?

• <u>NTP's poll process</u> relies on a small set of NTP servers (e.g., from pool.ntp.org), and this set is often DNS-cached.

Attacker only needs MitM capabilities with respect to few NTP servers

• **<u>NTP's selection process</u>** assumes that inaccurate sources are rare and fairly well-distributed around the UTC (the correct time)

Powerful and sophisticated MitM attackers are beyond the scope of <u>traditional</u> threat models

Chronos to the Rescue

The **Chronos NTP client** is designed to achieve the following:

- **Provable security** in the face of fairly powerful MitM attacks
 - negligible probability for successful timeshifting attacks

Backwards-compatibility

- ➢ no changes to NTP servers
- Imited software changes to client

Low computational and communication overhead

> query few NTP servers

Threat Model

The attacker:

- Controls a large fraction of the NTP servers in the pool (say, 1/4)
- Capable of both deciding the content of NTP responses <u>and</u> timing when responses arrive at the client
- Malicious

Chronos Architecture

Chronos' design combines several ingredients:

• Rely on many NTP servers

- Generate a large server pool (hundreds) per client
 - >E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
- Sets a very high threshold for a MitM attacker

• Query few servers

- > Randomly query a small fraction of the servers in the pool (e.g., 10-20)
- > Avoids overloading NTP servers

• Smart filtering

- > Remove outliers via a technique used in approximate agreement algorithms
- > Limit the MitM attacker's ability to contaminate the chosen time samples

- Query m (10s of) servers <u>at random</u>
- Order time samples from low to high
- Remove the d lowest and highest time samples

Check:

If (the remaining samples are close)

- Else
 - Resample

- Check:
- If (the remaining samples are close) and (average time close to local time)
- Then:
 - Use average as the new client time
- Else
 - Resample

if check & resample failed k times:

\\ panic mode

- Sample all servers
- Drop outliers
- Use average as new client time

if check & resample failed k times:

\\ panic mode

- Sample all servers
- Drop outliers
- Use average as new client time

Security Guarantees

Shifting time at a Chronos client by at least **100ms** from the UTC will take the attacker at least **22 years** in expectation

- ... when considering the following parameters:
 - Server pool of 500 servers, of whom 1/7 are controlled by an attacker
 - > 15 servers queried once an hour
 - \succ Good samples are within 25ms from UTC (ω =25)
- These parameters are derived from experiments we performed on AWS servers in Europe and the US

Chronos vs. Current NTP Clients

- Consider a pool of 500 servers, a p-fraction of which is controlled by an attacker.
- We compute the attacker's probability of successfully shifting the client's clock
 - for traditional NTP client
 - For Chronos NTP client

• We plot the ratio between these probabilities

Security Guarantees: Intuition

- Scenario 1: #() > d #() < m-d
- **Option I**: Only malicious samples remain
 - \geq <u>Assumption</u>: every good sample at most ω -far from UTC
 - >At least one good sample on each side
 - \rightarrow All remaining samples are between two good samples
 - \rightarrow All remaining samples are at most ω -away from UTC
- **Option II**: At least one good sample remains
- \geq Enforced: Remaining samples within the same 2 ω -interval
- \triangleright Remaining malicious samples are within 2 ω from a good sample
 - \rightarrow Remaining malicious samples are at most 3 ω -away from UTC

Hence, these attack strategies are ineffective

Security Guarantees: Intuition

m-2d

Scenario 2: #() ≤ d #() ≥ m-d

- Optimal attack strategy:

All malicious samples are lower than all good samples

(Or, all malicious samples are higher than all good samples)

- Chronos enforces an upper bound of 4ω on the permissible shift from the local **clock** (otherwise the server pool is re-sampled)
- The probability that #([™])≥m-d is extremely low (see paper for detailed analysis) The probability of repeated shift is negligible.

Consequently, a significant time shift is practically infeasible

Can Chronos be exploited for DoS attacks?

• Chronos repeatedly enters Panic Mode.

- d m-2d d
- Optimal attack strategy requires that attacker repeatedly succeed in accomplishing
 #() > d
 #() > d
 - At least one malicious sample remains
 - Malicious sample violates condition that all remaining samples be clustered
 - This leads to resampling (until Panic Threshold is exceeded).

Even for low Panic Threshold (k=3), probability of success is negligible (will take attacker decades to force Panic Mode)

Observations and Extensions

 When the pool of available servers is small (say, 3), using Chronos's sampling scheme on the entire server pool (n=m), yields meaningful <u>deterministic</u> security guarantees.

Important implications for PTP security

Conclusion

- NTP is very vulnerable to time-shifting attacks by MitM attackers
 - > Not designed to protect against **<u>strategic</u>** man-in-the-middle attacks
 - > Attacker who controls a few servers/sessions can shift client's time
- We presented the **Chronos NTP client**
 - > Provable security in the face of powerful and sophisticated MitM attackers
 - > Backwards-compatibility with legacy NTP (software changes to client only)
 - Low computational and communication overhead

Future Research

- Tighter security bounds?
- Weighing servers according to reputation?
- Benefits of server-side changes?
- Extensions to other time-synchronization protocols (e.g., PTP)?

Thank You

See full paper (@NDSS'18):

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018 02A-2 Deutsch paper.pdf